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the immunogenomics problem, tested the 
submissions and helped write the manuscript.  
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and test data. P.-R.L. analyzed and categorized all 
submission data and helped write the manuscript.
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Although the solvers were virtually devoid 
of domain-specific knowledge, abstracting 
the problem into general algorithmic and 
mathematical terms allowed a wide range of 
nondomain experts to address an important, 
complex problem. These contestants brought 
to the problem whatever skills and expertise 
they had or could find, probably yielding a far 
more diverse toolkit than would be available 
locally, and generated substantial diversity in 
technical approaches. Accessing such diversity 
may be particularly important, as big-data 
biomedical analytics is a rapidly evolving field 
in which it is difficult to know a priori the 
kind, quality and breadth of expertise needed 
to produce an effective solution.

In summary, we show that a prize-
based contest on a commercial platform 
can effectively recruit skilled individuals 
to apply their knowledge to a big-data 
biomedical problem. Deconstruction 
and transformation of problems for a 
heterogeneous solver community coupled 
with adequate data to produce and validate 
results can support solution diversity and 
minimize the risk of suboptimal solutions 
that may arise from limited searches. In 
addition to the benefits of generating new 
knowledge, this strategy may be particularly 
useful in situations where the computational 
or algorithmic problem, or potentially any 
science problem, represents a barrier to rapid 
progress but where finding the solution is 
not itself the major thrust of the investigator’s 
scientific effort. The America Competes Act 
passed by the US Congress provides funding 
agencies with the authority to administer 
their own prize-based contests and paves 
the way for establishing how grant recipients 
might access commercial prize platforms to 
accelerate their own research.

Note: Supplementary information is available at http://
www.nature.com/doifinder/10.1038/nbt.2495.
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To the Editor:
Maize expressing different versions 
of Bacillus thuringiensis toxins (Bt), 5 
enolphyruvylshikimate-3 phosphate synthase 
(EPSPS) and phosphinothricin acetyl 
transferase alone or in combination are part of 
the current wave of agricultural technological 
change. We analyzed grain yield data from 
annual field experiments during 1990-2010 
in Wisconsin to test hypotheses that maize 
expressing these transgenic traits alone or in 
combination (stacked) has greater productivity 
(as measured by the mean harvested yield) 
and lower production risk (as measured by the 
variance, skewness and kurtosis of harvested 
yield). Compared with conventional hybrids, 
the impact of transgenic traits (both single 
and stacked traits) on mean yield ranges from 
-12.2 to +6.5 bushels per acre. This shows that 
reducing yield risk is an important source of 
benefits of transgenic technology, especially 
for stacked traits. These benefits are estimated 
to be equivalent to a yield increase of  

0.8-4.2 bushels per acre. We found evidence 
for gene interactions (‘yield drag’ and ‘event 
lag’ effects) that can reduce yield.

The past century has seen marked increases 
in maize productivity. Average US maize yields 
increased from 72 to 153 bushels per acre from 
1970 to 2010 (ref. 1). Genetic selection has 
contributed to advances in maize productivity 
in recent decades2,3. Over the past 15 years, 
productivity gains have been complemented 
by rapid adoption of transgenic hybrids in 
the United States (and elsewhere)2,3. Rapid 
adoption of transgenic maize by US farmers 
suggests that the technology benefits them. Yet 
documenting the nature and sources of these 
benefits has been challenging4,5. There is some 
evidence of delayed yield increase due to ‘yield 
lag’ and yield drag associated with transgenes5. 
Agricultural production is also subject to 
substantial risk from unpredictable weather 
and pest damage. Transgenic crops have been 
argued to help reduce agricultural production 
risk, thus motivating insurance companies to 

Commercialized transgenic traits, 
maize productivity and yield risk
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lower crop insurance premiums for farmers 
who plant transgenic crops5.

At planting time, weather and pest 
damages are typically unknown and generate 
production uncertainty among farmers. 
Maize yield varies with managerial inputs 
(including both conventional genetic 
materials and transgenic materials) and other 
noncontrollable inputs (such as weather 
effects).

Transgenic technology provides new 
opportunities for advancing agricultural 
productivity and enhancing food security 
around the world6–9. Our objective was to 
measure the effect of transgenic traits that 
confer pest and/or herbicide resistance on 
grain yield and risk by analyzing yield data 
from field experiments over the period 
1990–2010 in Wisconsin. We document 
how patented transgenes affect maize grain 
yield and its variability. We examined two 
hypotheses: (i) transgene interactions affect 
maize productivity and (ii) transgenic 
technology lowers grain yield risk, as 
measured by the variance, skewness and 
kurtosis of maize yield. In general, reducing 
variance and increasing skewness are seen 

as desirable: they lead to lower risk exposure 
(from a lower variance) and lower exposure 
to unfavorable events located in the lower 
tail of the yield distribution (as captured by a 
higher skewness). Decreasing kurtosis may be 
desirable to the extent that it means a lower 
exposure to rare events in the tails of the 
yield distribution. Our analysis documents 
the extent to which transgenes contribute to 
reducing yield loss and risk exposure (data are 
described in Box 1). 

The estimation of mean yield shows that, 
over the past two decades, maize yield has 
increased on average by 1.81 bushels per 
acre per year (Supplementary Table 1). As 
we expected, there are substantial maize 
productivity differences across sites, reflecting 
the effects of agroclimatic conditions. In 
general, maize yield decreases northward 
owing to the effects of a shorter growing 
season.

The effects of transgenic hybrids on 
yield vary with the type of transgenic traits 
(Table 1). For single-transgenic-trait hybrids 
compared with conventional seeds, average 
yield is greater by 6.54 bushels per acre for 
maize expressing Bt against European corn 

borer (Ostrinia nubilalis; ECB) and by 5.76 
for maize expressing phosphinothricin acetyl 
transferase conferring glufosinate tolerance 
(GFT). But average yield is lower by 5.98 
bushels per acre for EPSPS glyphosate tolerant 
(GT) maize and by 12.22 bushels per acre for 
maize expressing single-trait Bt against corn 
rootworm (Diabrotica sp.; CRW). Several 
stacked hybrids show no statistical difference 
in mean yield compared with conventional 
hybrids: ECB-CRW, GT-CRW, ECB-GT-GFT, 
ECB-CRW-GFT and ECB-GT-CRW-GFT. 
However, the other stacked hybrids have 
significant effects on mean yield: ECB-GT 
(+3.47 bushels per acre), ECB-GFT (+3.13 
bushels per acre) and ECB-CRW-GT (–1.57 
bushels per acre).

Overall, the ECB trait has the most favorable 
effect on mean yield: +6.54 bushels per acre 
for ECB, +3.47 bushels per acre for ECB-GT 
and +3.13 bushels per acre for ECB-GFT. 
ECB gene technology effectively controls the 
European corn borer and limits its adverse 
effects on maize yield. Yet, with the exception 
of the ECB trait, we were surprised not to 
find strongly positive transgenic yield effects. 
First, this could be explained in part by yield 

our empirical analysis relies on data from field experiments during 
1990–2010 at the University of Wisconsin. The field experiments 
were done at agricultural research stations and with long-term farmer 
cooperators across Wisconsin (see http://corn.agronomy.wisc.edu/
HT/images/Map.jpg for a map of research locations). Management 
practices were typical of those used on maize farms practicing rain-
fed agriculture. The seedbed at each location was usually prepared 
by fall plowing followed by spring roller harrowing. Fertilizer was 
applied as recommended by soil tests. Herbicides were applied for 
weed control and supplemented with cultivation when necessary. 
Insecticide was applied when the infestation level was above a 
threshold at which a farmer would typically apply insecticides. 
Two-row plots, 25 feet long, were planted at all locations. The 
experimental design was a randomized complete block in which each 
hybrid was grown in at least three separate plots (replicates) at each 
location to account for field variability. Lodged plants and/or broken 
stalks were counted; plot grain weights, moisture content and test 
weight were measured; and yields were calculated and adjusted to 
15.5% moisture.

A total of 4,748 hybrids were tested in the past 21 years, of 
which 2,653 were conventional hybrids and 2,095 were transgenic 
hybrids. Some hybrids were tested in multiple locations and/or for 
multiple years, yielding 31,799 usable observations of the adjusted 
yield (measured in bushels per acre) for a single hybrid at a single 
location for a single year.

our analysis relies on a moment-based approach by evaluating the 
mean, variance, skewness and kurtosis of maize yield conditional on 
location and managerial inputs17–19. The mean yield reflects average 
productivity. The variance captures the variability of maize yield 
around its mean. The skewness measures possible asymmetry of the 
yield distribution, with a negative skewness capturing exposure to 

losses located in the lower tail of the distribution (downside risk). 
The kurtosis measures the thickness in the tails of the distribution of 
maize yield, which is relevant to the extent that the yield distribution 
departs from a normal distribution (which has ‘thin tails’).

We first specified and estimated a regression model for mean 
yield as a function of location and managerial inputs. The error 
term was then used to estimate the variance, skewness and kurtosis 
by regressing the square, cube and fourth power of the error term, 
respectively, against location and managerial inputs10–12. The results 
provide a basis for evaluating productivity effects of genetically 
engineered genes as they affect maize yield under risk. Details on 
the statistical approach are in Supplementary Methods. 

In general, the mean, variance, skewness and kurtosis of yield 
vary with management choices, including transgenes. We examined 
the presence of possible interaction effects among genes, including 
interactions between transgenes and the basic germplasm, and 
interactions among stacked transgenes. Transgenes can also 
affect variance, skewness and kurtosis of yield. Noting that both 
germplasm and transgenes change over time, our analysis focused 
on comparing yield performance across hybrid types: conventional, 
single transgenic traits and stacked transgenic traits.

explanatory variables include transgenes, location, time and other 
managerial factors. The location variable captures site-specific 
factors affecting maize yield (for example, soil, weather and test site 
management). Statistical estimates are in Supplementary Table 1.  
The transgenic variables are dummy variables set equal to 1 
when a given transgene is present, and set to zero otherwise. For 
conventional hybrids, all transgenic dummy variables are set equal to 
zero. In the presence of multiple transgenes, stacking dummies are 
set equal to 1 when a particular set of stacked genes are present and 
set to zero otherwise.

Box 1  Data used in analysis
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event lag effect was first negative, but then 
turned positive (after 7 years for GT and after 
10 years for ECB). This indicates that the 
effects of transgenes on maize yield depend 
on interactions between transgenes and the 
underlying germplasm. We interpret our 
finding as indirect evidence that plant breeders 
try to minimize adverse interaction effects 
between transgenes and the germplasm over 
time. Yet such gene interactions vary with 
each transgene. For ECB-CRW, GT-CRW, 
ECB-GFT and ECB-GFT-CRW hybrids, the 
event lag effects are negative and significant. In 
contrast, for ECB-CRW-GT and the ECB-GT-
CRW-GFT hybrids, the event lag effects are 
positive and significant. And for single-GFT, 
ECB-GT and ECB-GT-GFT hybrids, there 
is no statistical evidence of event lag effects. 
In these cases, interaction effects between 
transgenes and the underlying germplasm 
seem negligible.

Next, we examined the effects of transgenic 
technology on production risk for maize. 
Transgenic crops have been argued to lower 
yield loss and reduce risk exposure5 (for 
example, by reducing risk of yield damage 
from pest infestation). Our analysis shows 
that transgenic hybrids have significant effects 
on yield risk (Supplementary Table 1). 
Transgenic technology affects the variance of 
maize yield. The variance of transgenic seeds 
is always lower than that of conventional 
seeds (Table 1). This suggests that transgenic 
hybrids tend to reduce yield risk, which is 
consistent with earlier findings12. Even so, 
these effects vary across transgenic hybrids. 
Stacked transgenes tend to be more effective 
in reducing variance. For example, the 
reduction in variance is much larger for ECB-
CRW than for ECB or CRW. There seems to 
be substantial synergy among transgenes in 
reducing risk exposure. This finding indicates 
that in certain cases transgenic technology 
can help farmers reduce their risk exposure. 
In particular, transgenic technology provides 
new options for mitigating the effects of 
increased weather uncertainty (for example, 
owing to climate change).

For event lag effects, the longer the GT 
trait has been introduced, the lower the yield 
variance, whereas the effect is opposite for the 
ECB trait (Supplementary Table 1). However, 
the quadratic term time lag effect for the ECB 
trait is negative, showing that variance will 
eventually decrease for that type of hybrid. 
The variance-reducing effects of the ECB trait 
seem stronger in the longer term. The event 
lag effect on yield variance for the ECB-CRW 
stacked event is also negative.

The skewness and kurtosis of maize yield 
show that transgenic traits can affect the 

production and selection of better cultivars by 
geneticists and plant breeders.

Lower performance may also be caused by 
a time lag in the development of hybrids and 
evolving progress in refining the effectiveness 
of transgenic technologies (Supplementary 
Table 1). These lags are measured by the 
number of years since the first introduction of 
a given event for each specific trait or system 
of traits (stacks). We evaluated the effect 
of these lags on maize yield and call them 
event lag effects. Such effects may develop if 
transgenes interact with genetic material in 
the germplasm. Again, gene interactions can 
be reduced by replacement of low-yielding 
cultivars with better ones by geneticists and 
plant breeders. Event lag effects may develop 
depending on where transgenes are inserted in 
the germplasm, the quality of the germplasm 
and the success of transgene transfer. For 
example, improved production of transgenic 
cultivars may generate positive event lag effects 
if transgenes and the basic seed germplasm 
complement each other over time.

We found evidence of event lag effects, 
although they vary by trait and by stacking. 
Nonlinear lag effects were found for events 
in the market for many years. Five trait(s) 
systems have been in the market for >10 years 
(Supplementary Table 1): GT, ECB, GFT, 
ECB-GT and ECB-GFT. A quadratic time 
lag term (in addition to a linear term) was 
included for these transgenic trait(s) systems. 
For example, for GT and ECB hybrids, the 

drag effects, which may occur when there are 
negative interaction effects among transgenes 
(as discussed above). Second, our analysis 
focuses only on yield effects, and neglects 
possible benefits of transgenic technology 
associated with reduced input use (for 
example, pesticides and tillage).

We also analyzed the joint effects of stacked 
transgenes on mean yield. Without gene 
interactions, the effect of stacked genes would 
be equal to the sum of the corresponding 
single gene effects. Alternatively, with gene 
interactions, the effect of stacked genes would 
differ from the sum of single gene effects. We 
found strong evidence of gene interactions 
among transgenic traits when they are stacked. 
We found negative and significant interaction 
effects for four different stacking schemes: 
ECB-GT; ECB-GFT; ECB-GT-GFT; and ECB-
GT-CRW-GFT (Supplementary Table 1).  
For these stacking schemes, the mean yield 
increase from stacked seeds is smaller than 
the sum of the mean yield increases obtained 
from corresponding single genes (Table 1). 
Positive and significant interaction effects 
were found when ECB and CRW were stacked. 
This indicates that Bt transgenes interact with 
each other as they affect maize yield. Although 
the identification of gene interactions in 
maize is not new10,11, the evidence of negative 
interaction effects among transgenes suggests 
that transgenic hybrids can perform more 
poorly than conventional hybrids. Yet, such 
gene interactions can be reduced over time by 

 Table 1  Mean, variance, skewness and kurtosis of hybrids with transgenes compared 
with conventional hybridsa

Hybrid
Number of 
observations Mean yieldb

Variance of 
yieldb,c

Skewness of 
yieldb

Kurtosis of 
yieldb

conventional 19,652 186*** 709*** –5,770*** 793,613***

Glyphosate tolerant (GT)b 972 –5.98*** –151*** 2,688* –270,557***

Glufosinate tolerant (GFT)b 103 5.76 –121 –5,544 221,296

Bt for european corn borer 
(ecB)b

3,484 6.54*** –61** 1,30 6 –279,710***

Bt for corn rootworm (crW)b 36 –12.22** –72 9,842* –322,473**

ecB-crWb 85 3.19 –460*** 4,437** –449,657***

ecB-GTb 1,454 3.47*** –260*** 3,441*** –411,189***

GT-crWb 166 2.27 –242*** 3,816** –368,791***

ecB-GFTb 998 3.13** –162** –3,092 –132,537

ecB-crW-GTb 3,215 –1.57** –336*** 3,642*** –432,732***

ecB-GT-GFTb 631 2.24 –147** 2,689 –279,236**

ecB-crW-GFTb 206 2.04 –358*** 2,738 –390,709***

ecB-GT-crW-GFTb 797 –1.26 –258*** 2,642 –364,863***
aSimulated transgenic effects are based on estimated coefficients in Supplementary Table 1 and were evaluated using an 
arbitrary scenario of maize grown in 2005 in Lancaster, Wisconsin, without irrigation or insecticide application, and with no 
tillage practice in either fall or spring. All other relevant variables were set at the mean or median. results comparing yield 
differences across hybrid types were not affected by these choices, because our analysis was based on pooled data across 
all sites and was done by evaluating yield differences across hybrid types, controlling for location and time. The standard 
errors used for the significance tests were bootstrapped. *, P < 0.1; **, P < 0.05; ***, P < 0.01 (t-test).
bFor transgenic hybrids, number of observations, mean yield, variance in yield, skewness of yield and kurtosis of yield are 
expressed as difference between that of transgenic variety and that of the conventional benchmark.
cSee Table 2 for a more intuitive evaluation of estimated effects on variance, skewness and kurtosis.
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hybrids (Table 2). These effects come from 
reductions in all three components of the 
cost of risk, but the reduction in variance 
dominates that of skewness and kurtosis. 
This indicates that Bt and EPSPS transgenic 
hybrids help reduce farmers’ exposure to risk. 
However, these effects vary with transgenic 
hybrids. Stacked transgenes reduce the cost 
of risk more than single transgenes (Table 2). 
Given the current move toward widespread 
use of stacked genes, transgenic technology is 
becoming more effective in reducing the cost 
of risk exposure in maize production.

Transgenic maize can generate sizable 
risk benefits. For example, compared with 
conventional hybrids, ECB-CRW stacked 
genes reduce the cost of risk by an equivalent 
yield increase of 4.19 bushels per acre  
(Table 2). For ECB-CRW-GFT and ECB-
CRW-GT, the reduction is 3.23 and 3.06 
bushels per acre, respectively. And for 
ECB-GT, GT-CRW and ECB-GT-CRW-GFT,  
the reduction is ~2.4 bushels per acre. 
Some of these estimates are larger than the 
corresponding estimates related to mean 
effects (Table 1). 

In conclusion, our results show how 
transgenic technology can improve farmers’ 
ability to deal with a risky environment. The 
availability of this technology seems important 
given current concerns about the effects of 
climate change on production uncertainty in 
agriculture.

Note: Supplementary information is available at http://
www.nature.com/doifinder/10.1038/nbt.2496.
ACKNOWLEDGMENTS
This work was support in part by a US Department 
of Agriculture Hatch grant and a US Department of 
Agriculture AFRI grant.

AuThOr CONTribuTiONS
G.S. and J.C. designed the study and analyzed the data. 
J.L. conducted the field tests, collected, processed and 

distribution of maize yield (beyond their 
effects on variance). We need to go beyond 
mean and variance in the analysis of yield 
risk. Yield skewness varies with seed types. 
It is negative and statistically significant 
for conventional seeds. In this case, yield 
distribution is skewed to the left (indicating 
a greater exposure to losses and downside 
risk). This shows that maize yield is not 
normally distributed13–16. Transgenes affect 
yield skewness and can reduce exposure 
to downside risk (by increasing skewness 
compared with conventional hybrids;  
Table 1). These effects are notable for GT, 
CRW, ECB-CRW, ECB-GT, GT-CRW 
and ECB-CRW-GT. Thus in certain cases, 
transgenic technology can contribute 
to reducing exposure to downside risk, 
indicating that transgenic technology can help 
farmers reduce their exposure to unfavorable 
events and mitigate the effects of adverse 
weather shocks.

Transgenic hybrids have lower kurtosis 
compared with conventional hybrids  
(Table 1); therefore transgenic technology also 
contributes to reducing rare events in the tails 
of the maize yield distribution. This feature is 
also desirable. Although climate change may 
increase the likelihood of these rare events, 
transgenic technology can help mitigate their 
effects on maize yield.

How important are the effects of genetically 
engineered genes on yield risk? To evaluate 
such effects, we measure the cost of risk 
(called the risk premium in economics; 
Supplementary Methods). The cost of risk 
is defined as the number of bushels of maize 
per acre a farmer is willing to give up to 
replace a risky yield with mean yield. The 
cost of risk depends on the farmer’s degree 
of risk aversion. We considered a scenario in 
which the farmer exhibits constant relative 
risk aversion, with a relative risk aversion 
parameter equal to 3 (moderate risk aversion). 
The estimated costs of risk associated with 
different transgenic hybrids are reported in 
Table 2. The total cost of risk is decomposed 
into three components: variance, skewness and 
kurtosis.

In general, the total cost of risk is 2–4% of 
expected yield. We analyzed the extent of risk 
exposure in maize production. First, most 
of the cost of risk comes from the variance 
component. For example, the total cost of 
risk for conventional hybrids is 6.36 bushels 
per acre; the variance component accounts 
for 90% of it (5.72 bushels per acre) and the 
skewness and kurtosis components account 
for about 5% each.

Second, all transgenic hybrids decrease 
the cost of risk compared with conventional 

Table 2  Estimated cost of risk (bushels per acre) for different hybrid types

Hybrid type

Cost of risk 
due to  

variance

Cost of risk 
due to  

skewness

Cost of risk 
due to  

kurtosis
Total cost  

of risk

Difference in total cost 
of risk (transgenic versus 
conventional hybrid)

conventional 5.72 0.33 0.31 6.36 NA

GT 4.65 0.19 0.22 5.06 –1.30

GFT 4.60 0.62 0.36 5.58 –0.78

Bt for ecB 5.05 0.24 0.18 5.47 –0.89

Bt for crW 5.50 –0.27 0.22 5.45 –0.91

ecB-crW 1.97 0.07 0.13 2.17 –4.19

ecB-GT 3.56 0.13 0.14 3.83 –2.43

GT-crW 3.72 0.11 0.16 3.99 –2.37

ecB-GFT 4.34 0.50 0.24 5.08 –1.28

ecB-crW-GT 3.03 0.13 0.14 3.30 –3.06

ecB-GT-GFT 4.48 0.17 0.19 4.85 –1.51

ecB-crW-GFT 2.80 0.17 0.15 3.13 –3.23

ecB-GT-crW-GFT 3.66 0.18 0.17 4.01 –2.35
NA, not applicable.
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